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The wing polyphenism of pea aphids is a compelling laboratory
model with which to study the molecular mechanisms underlying
phenotypic plasticity. In this polyphenism, environmental stressors
such as high aphid density cause asexual, viviparous adult female
aphids to alter the developmental fate of their embryos from
wingless to winged morphs. This polyphenism is transgenerational,
in that the pea aphid mother experiences the environmental
signals, but it is her offspring that are affected. Previous research
suggested that the steroid hormone ecdysone may play a role in
this polyphenism. Here, we analyzed ecdysone-related gene ex-
pression patterns and found that they were consistent with a
down-regulation of the ecdysone pathway being involved in the
production of winged offspring. We therefore predicted that
reduced ecdysone signaling would result in more winged offspring.
Experimental injections of ecdysone or its analog resulted in a
decreased production of winged offspring. Conversely, interfering
with ecdysone signaling using an ecdysone receptor antagonist or
knocking down the ecdysone receptor gene with RNAi resulted
in an increased production of winged offspring. Our results
are therefore consistent with the idea that ecdysone plays a
causative role in the regulation of the proportion of winged
offspring produced in response to crowding in this polyphenism.
Our results also show that an environmentally regulated maternal
hormone can mediate phenotype production in the next genera-
tion, as well as provide significant insight into the molecular mecha-
nisms underlying the functioning of transgenerational phenotypic
plasticity.
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One of the clearest examples of the effects of organism–

environment interactions is phenotypic plasticity, where a
single genotype can give rise to multiple phenotypes, depending
on environmental cues (1). Polyphenism is the most extreme form
of phenotypic plasticity, with only a few discontinuous phenotypes
produced. Despite considerable interest, known control mecha-
nisms of polyphenic development remain limited to a handful of
taxa (e.g., refs. 2–6) in which environmental factors act directly
on the individuals that go on to display the corresponding pheno-
type. In contrast, aphids exhibit a transgenerational wing poly-
phenism in which external cues act maternally and are transmitted
to offspring, which are the individuals that develop into the alter-
native winged and wingless morphs. Wing polyphenism in aphids
has served as a powerful evolutionary model for the study of trade-
offs between dispersal and reproduction (7–9), but the molecular
mechanisms underlying the induction of winged vs. wingless aphids
remain unknown. More generally, little is known about the mo-
lecular mechanisms that control transgenerational polyphenism.
The goal of our study was to illuminate these mechanisms.
The aphid wing polyphenism occurs during the asexual portion

of the aphid life cycle. Wingless asexual females parthenoge-
netically and viviparously produce genetically identical wingless
and winged offspring. Winged aphids are produced in response
to stressful environmental conditions such as crowding, poor food
quality, or the presence of predators (10). The overall success of a

particular aphid genotype likely depends on a balance between the
high fecundity of wingless morphs and the superior dispersal
ability of the winged morph. Wing morph determination in pea
aphids occurs prenatally, during embryogenesis (11). Only during
this sensitive period can embryos receive the maternal signal that
determines the wing phenotype. Once born, a nymph’s de-
velopmental trajectory, and thus its adult phenotype, is set.
We previously performed a genome-wide transcriptional pro-

filing study on pea aphids (Acyrthosiphon pisum) during prenatal
wing determination to identify the key molecular pathways in-
volved in this process (12). We found that the genes differentially
expressed between aphid mothers producing winged or wingless
progeny suggested that ecdysone signaling may play a role in
controlling wing morph determination. For example, the pro-
thoracicostatic peptide gene, whose gene product inhibits ecdy-
sone synthesis (13), was at higher levels in females producing
winged offspring. This indicated that ecdysone levels were lower
in these females. Consistent with this inference, genes that are ac-
tivated in response to dropping ecdysone levels [eclosion hormone,
crustacean cardioactive peptide, bursicon (14)] were at higher levels
in female adults producing winged offspring. In contrast, genes that
are ecdysone inducible, or are coactivators of the ecdysone receptor
(15–17), were at higher levels in adult females producing wingless
offspring. These include the two genes whose products form the
heterodimeric ecdysone receptor (EcR and ultraspiracle), along
with other well-known ecdysone-inducible genes such as broad and
ftz-f1. Combined, these data showed that genes associated with
ecdysone signaling were differentially expressed in aphid mothers
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that were induced to produce winged offspring compared with their
uninduced counterparts (summarized in Fig. S1; gene identities
listed in Table S1).
Ecdysone (and its bioactive derivative 20-OH ecdysone) is a

well-studied insect steroid hormone, primarily known for its role
in molting and metamorphosis (18). Ecdysone binds to its nu-
clear receptor, the ecdysone receptor, a heterodimer comprising
the EcR protein and the Ultraspiracle protein (15). Upon as-
sociation with its hormone, the receptor binds cis-regulatory
DNA (19) elements and recruits cofactors to regulate tran-
scription (20–23). Ecdysone-mediated signaling therefore has the
ability to mediate the expression of the many phenotypes that
differ between the two morphs by acting as a transcriptional
modulator. Ecdysone-mediated control of seasonal morphs has
been described before in the butterflies Araschnia levana, Precis
coenia, and Bicyclus anynana (24–26), and the ecdysone receptor
gene product (EcR) mediates the quantitative differences in
plasticity between fore and hindwings in Bicyclus anynana (27).
Here we demonstrate a causative role for ecdysone signaling in
the transgenerational pea aphid wing polyphenism. This study
describes a role for ecdysone in polyphenism outside of the
Lepidoptera.

Results and Discussion
To determine whether ecdysone’s role in the aphid wing poly-
phenism was correlative or causative, we tested whether ecdy-
sone application affected winged offspring production. On the
basis of the direction of differential expression of ecdysone-
related genes from our previous study (12) (Table S1 and Fig. S1),

we hypothesized that higher levels of ecdysone would result in
lower percentages of winged offspring. To test this, we raised
aphids at moderate density (20 per plant) so that they would
produce both winged and wingless offspring. After reaching
adulthood, aphids were placed on an artificial liquid diet (diet
“A” of ref. 28) containing 250 μg/mL 20-hydroxyecdysone (20E)
or on a control without 20E for 24 h. As anticipated, 20E-treated
females produced a significantly lower proportion of winged
offspring compared with control aphids when ingesting 20E [Fig.
1A, day 1; Mann–Whitney U test (MW) test, offspring counted
from n = 18 groups of three adult aphids for treatment, n = 19
groups of three aphids for control; P = 0.014]. This effect dis-
sipated after the aphids were returned to plants posttreatment;
offspring produced in the second 24 h did not have significantly
different percentages of winged offspring (Fig. 1A, day 2; MW,
n = 18 groups of three aphids for treatment, n = 19 groups of three
aphids for control; P = 0.197).
To corroborate that ecdysone could cause a shift in the wing

polyphenism response, we also treated the aphids with an ec-
dysone agonist, methoxyfenozide (RH-2485) (19). Because
methoxyfenozide is not water soluble, we could not administer it
via feeding. Instead, we used abdominal injections. We again
raised aphids at moderate density so that they produced offspring
of both phenotypes. Note that raising aphids at moderate density
does not control the exact proportion of winged and wingless
offspring they produce, so relevant comparisons are within ex-
periments (treatment vs. control for a particular compound),
rather than between experiments. As with the 20E treatment,
methoxyfenozide-treated aphids produced a significantly lower
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Fig. 1. The addition of ecdysone causes the production of fewer winged offspring, whereas interference with ecdysone receptor activity causes the pro-
duction of more winged offspring. (A) Adult, wingless aphids were fed on artificial media containing 20E or control media without 20E (n = 18 sets of three
aphids for the treatment, n = 19 for the control), or (B) were injected with methoxyfenozide dissolved in acetone or acetone only (n = 20 sets of three aphids
for the treatment, n = 19 for the control). (C) Adult, wingless aphids were injected with cucurbitacin B dissolved in Ringer’s solution or a Ringer’s solution
control (n = 15 sets of three aphids each for treatment and control), or (D) with dsRNA against EcR or EcR compared with control aphids (n = 15 sets of three
aphids each for treatment and control). Each data point is the percentage of winged offspring produced by sets of three aphids. Boxes show the interquartile
range, and the line is the median value of each group. Black circles are outliers. Significant differences between treatments are represented by asterisks: †P <
0.10; *P < 0.05; ***P < 0.001.
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proportion of winged offspring than controls. This effect per-
sisted, strongly, for 2 d (Fig. 1B; MW, n = 20 groups of three
aphids for treatment, n = 19 groups of three aphids for control;
P = 0.008, day 1; P = 0.003, day 2). We conclude that the addition
of ecdysone or its analog can affect the production of winged vs.
wingless offspring.
To further investigate the role of ecdysone in the pea aphid

wing polyphenism, we reasoned that reduced sensitivity to cir-
culating ecdysone might be sufficient to cause adult females to
produce more winged offspring, the opposite of the outcomes
observed above. We thus interfered with ecdysone signaling ac-
tivity, using cucurbitacin B, an ecdysone receptor antagonist that
prevents the binding of ecdysone (29). This compound has pre-
viously been used in butterflies to inhibit ecdysone signaling (27).
As expected, treatment with cucurbitacin B caused a significantly
higher production of winged offspring over the 2 dd posttreat-
ment (Fig. 1C; MW, n = 15 groups of three aphids; P < 0.001,
day 1; P = 0.036, day 2). We also interfered with ecdysone sig-
naling activity, using EcR RNAi. Double-stranded EcR RNA
injected into wingless aphid adults raised at moderate densities
resulted in a slightly higher percentage of winged offspring, al-
though the effect was not significant at the P < 0.05 level (Fig.
1D; MW, n = 15 groups of three aphids; P = 0.092 day 1; P =
0.237 day 2). As with other dsRNA studies in aphids (e.g., ref.
30), and indeed many other organisms, we were only able to
achieve partial and variable knockdown of the transcript (∼50%
knockdown 24 h after injection; Fig. S2). The comparative
weakness of these results likely reflects this partial knockdown,
as well as autoregulation of the EcR gene (31). Importantly,
however, the trend on day 1 mirrors the cucurbitacin B results and
supports the idea that decreasing ecdysone signaling affects the
offspring phenotypes.
Treatments also had an effect on offspring production. For

20E ingestion, the number of nymphs produced per female was

significantly lower in treated vs. control aphids in the first 24 h,
an effect that was no longer present in the second 24 h (MW,
offspring counted from n = 18 groups of three adult aphids for
treatment, n = 19 for control; P < 0.001 day 1; P = 0.274 day 2).
Similarly, injection with the ecdysone analog, methoxyfenozide,
significantly repressed the number of offspring produced by the
mothers on both days (MW, n = 20; P = 0.025, day 1; P = 0.038,
day 2). Conversely, treatment with the ecdysone receptor an-
tagonist, cucurbitacin B, resulted in a significantly higher number
of total offspring relative to controls (MW, n = 15; P = 0.003,
day 1; P < 0.001, day 2), and the number of offspring was higher
in the EcR dsRNA samples on day 1, although not significantly
higher; no differences were seen on day 2 (MW, n = 15; P =
0.118 day 1; P = 0.272 day 2). The feeding of ecdysone or ec-
dysone analogs inhibits ovarian maturation and egg production
in houseflies and other insects (18, 32), so this repressive effect
on offspring production in the first two experiments is likely
mediated by the excess ecdysone, with the opposite effect in the
latter two experiments. This expected reproductive effect is an
independent indication that the aphids are, in fact, sensing the
ecdysone manipulations.
In summary, using transcript level differences and functional

studies, we have shown that ecdysone-mediated signaling is a
critical pathway underlying the transgenerational pea aphid wing
polyphenism. Treatment with ecdysone or an analog resulted in
higher proportions of wingless offspring, whereas treatment with
an ecdysone receptor antagonist or EcR RNAi resulted in more
winged offspring (Fig. 2). Our results suggest that higher aphid
densities result in lower levels of ecdysone pathway signaling in
aphid mothers, which causes embryos in their ovaries to be fated
to become winged. In adult insects generally, including in aphids,
the primary organ that secretes ecdysone is the ovaries (33, 34).
Ecdysone released by the mother’s ovaries could directly signal
the embryos, which could then respond by changing their develop-
mental program. This hypothesized mechanism could connect en-
vironmental perception by the mother with a phenotypic response
by the offspring.
Our results provide significant insight into the molecular de-

termination of the aphid wing polyphenism, which has long been
a textbook example of transgenerational polyphenism, but whose
control mechanisms up until now have proven elusive (35, 36).
This study provides strong support for a causative factor in this
process of prenatal morph determination. Most previous mo-
lecular studies of the aphid wing polyphenism profiled gene ex-
pression changes far downstream of morph determination, such
as differences between winged and wingless adults (37–39; al-
though, see ref. 40); these studies examined the transcriptional
basis of morph development and function, but not morph de-
termination. Previous physiological studies primarily focused on
the possible role of another major insect hormone, juvenile
hormone, with the hypothesis that a wingless adult is a juvenilized
winged adult. A role for juvenile hormone in the wing poly-
phenism is not ruled out by this study, especially given the com-
plex crosstalk that can occur between the two hormone signaling
pathways (41–43), but to date, no definitive role for juvenile
hormone has emerged (7, 35, 44), although it probably functions
in the process of wing development in some aphid species (45, 46).
Polyphenisms vary greatly in the timing of when development

diverges. Earlier determination allows morphs to have more
significant changes in morphology, and thus become more fine-
tuned to their morph’s function, whereas later determination
ensures the correct matching of morph to the environment (7,
47). For the pea aphid wing polyphenism, morph determination
is embryonic and maternally mediated, with the resulting adult
morphs highly differentiated from one another; winged and wing-
less morphs differ not only in the complete presence or absence of
wings and wing musculature but also in a suite of other morpho-
logical, behavioral, and developmental characteristics (reviewed in

Fig. 2. Summary of ecdysone signaling manipulation experiments. All
treatments, indicated along the top, were applied to adult wingless females.
The relative effect of each treatment (i.e., the shift in the median of the
experimental group relative to the control) is represented by the width of
arrows shown along the bottom, and the direction of morph shift in the
form of the offspring phenotypes. Arrows correspond to the treatments,
coded by different colors. Treatments that manipulated ecdysone signaling
in a similar manner are represented within each dotted box.
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ref. 35). Other polyphenisms are determined later in development,
are intragenerational, and result in less differentiated forms that
may only differ in one particular trait (7). For example, the brown
plant hopper (Nilaparvata lugens) produces long-winged and
reduced-winged morphs in response to population density and
host plant quality, and determination occurs at later nymphal
instars (48, 49). The morphs differ primarily in their wing size,
and consequently their flight capability. Different developmental
divergence times likely require different molecular mechanisms.
Insulin receptor signaling, known for its conserved role in growth
(50), controls wing morph differences in the plant hopper wing
polyphenism, primarily through action in the wing buds (51). In
contrast, in the pea aphid wing polyphenism, we would predict
that insulin signaling controls differential growth of the two
morphs, but that this differential growth is downstream of morph
determination. In other words, insulin receptor signaling may not
solely be able to control the larger range of traits that differ
between winged and wingless pea aphids compared with long-
winged and reduced-winged plant hopper morphs. In general,
whether or not there are physiological mechanisms that are
optimal for earlier relative to later morph determination awaits
information from even more polyphenic systems.

Materials and Methods
The pea aphid line used for all experiments in this study was ROC-1, collected
from Rochester, NewYork, in 2008. Aphids were reared in cages on fava (Vicia
fabae) seedlings.

Gene Expression Analysis. We previously performed an RNA-Seq study using
RNA collected from adult aphids with ovaries and embryos removed to
compare two treatments: females that had been crowded andwere known to
be producing primarily winged offspring or females that had not been
crowded and were known to be producing primarily wingless offspring (12).
That global analysis of transcriptional differences revealed enrichment of
genes involved in the ecdysone receptor-mediated signaling pathway or
hormonal activity, among many other categories. Here we focused specifi-
cally on these genes and also included other known ecdysone-related genes
we mined from the literature (Table S1). Methods of calculating significant
differential expression can be found in ref. 12.

Feeding of 20E Using Artificial Media. 20E (250 μg/mL, Sigma) was resus-
pended in Ringer’s solution and added to 175 μL artificial media (28). An
equal amount of Ringer’s without 20E was added to the control media. This
media was placed in film canisters between two layers of Parafilm stretched
over one end. Aphids were raised at moderate density, with ∼20 aphids per
plant. At day three of adulthood, aphids were randomly placed into the
treatment or control canisters in groups of three, for a total of 48 aphids in
the treatment group and 51 in the control (n = 18 and n = 19, respectively).
After 24 h, nymphs were removed and placed on plants; adults were also
placed on plants in groups of three for an additional day of nymph

deposition. Nymph phenotypes (winged or wingless) were determined after
they reached adulthood.

Injection of Methoxyfenozide and Cucurbitacin B. For the remaining experi-
ments (pharmaceutical and RNAi injections), aphids were raised at low
density (five per fava plant) for several generations. From a low-density stock,
sets of 20 first instar aphids were moved onto plants to create a single
generation of moderate density. These aphids, as adults, were then removed
from plants and randomized as to whether they were used for treatments
or controls.

Methoxyfenozide was a gift from S. R. Palli (University of Kentucky) and
was resuspended in acetone at a concentration of 100 μg/μL. Cucurbitacin B
was obtained from Sigma. Aphids at day three of adulthood were injected in
their abdomens with ∼0.2 μL 100 μg/μL methoxyfenozide or an acetone
control (60 aphids each), or 0.2 μL 1 μg/μL cucurbitacin B or a Ringer’s so-
lution control (45 aphids each). After injection, aphids were placed in groups
of three on plants for 24 h. Injected aphids were moved to new plants after
another 24 h to monitor the nymphs produced each day and then killed.
Offspring were phenotyped as winged or wingless after maturation.

RNAi Injections and Knockdown Verification. Using T7 containing primers
(TGTACCTGAAGTTCAATGTGCAG and AGCTTCACTTGAGCAAGCCT), 467 bp
of EcR (ACYPI001692) was amplified from cDNA. Four hundred sixty-six base
pairs EcR, ACYPI001692, was amplified using T7 containing primers (TG-
TACCTGAAGTTCAATGTGCAG and AGCTTCACTTGAGCAAGCCT) from cDNA.
A similar-sized lacZ DNA fragment was a gift from J. H. Werren (University of
Rochester). Two micrograms PCR product was used to make double-stranded
RNA using the MEGAscript T7 Kit (Ambion), according to manufacturer’s in-
structions. dsRNA was used at concentrations of 2.3 μg/μL for EcR and 2.7 μg/μL
for lacZ. Forty-five aphids were used in each of the treatment and control
groups. After injection, aphids were placed on plants in groups of three and
moved every 24 h for 3 d of nymph production. EcR mRNA knockdown by
RNAi injection was validated by qRT-PCR in a separate set of aphids. For this,
adult aphids (15 each for treatment and control) were treated with double-
stranded EcR or lacZ RNA (dsEcR or dslacZ) and placed in groups of three on
plants. After 24 h, the adults were flash frozen in liquid nitrogen. Total RNA
was extracted from five groups of three aphids for each treatment, using the
TRIzol Reagent (Ambion), following manufacturer’s instructions. First-strand
cDNA was synthesized using iScript cDNA synthesis kit (Bio-Rad) from 1 μg
RNA. PCR amplifications were carried out for each set, using iTaq Universal
SYBR Green Supermix (Bio-Rad). Along with the EcR gene-specific primers
(GTTACCATTACAACGCGCTGA and ACTTCCGCCTCATGTACATGT), primers for
NADH dehydrogenase (TTGGTACACTGGTGAAGGTATG and AGCGGTAGCT-
TCTTGGTATTG) were used as a reference gene to amplify each set of samples
because of its stability of expression. Reactions were performed in a CFX96
Touch Real-Time PCR Detection System (Bio-Rad). Each biological replicate
was measured with three technical replicates, and fold change was calcu-
lated using the 2−ΔΔCT method (52).
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